Stable differentiation and clonality of murine long-term hematopoiesis after extended reduced-intensity selection for MGMT P140K transgene expression.
نویسندگان
چکیده
Efficient in vivo selection increases survival of gene-corrected hematopoietic stem cells (HSCs) and protects hematopoiesis, even if initial gene transfer efficiency is low. Moreover, selection of a limited number of transduced HSCs lowers the number of cell clones at risk of gene activation by insertional mutagenesis. However, a limited clonal repertoire greatly increases the proliferation stress of each individual clone. Therefore, understanding the impact of in vivo selection on proliferation and lineage differentiation of stem-cell clones is essential for its clinical use. We established minimal cell and drug dosage requirements for selection of P140K mutant O6-methylguanine-DNA-methyltransferase (MGMT P140K)-expressing HSCs and monitored their differentiation potential and clonality under long-term selective stress. Up to 17 administrations of O6-benzylguanine (O6-BG) and 1,3-bis(2-chloroethyl)-1-nitroso-urea (BCNU) did not impair long-term differentiation and proliferation of MGMT P140K-expressing stem-cell clones in mice that underwent serial transplantation and did not lead to clonal exhaustion. Interestingly, not all gene-modified hematopoietic repopulating cell clones were efficiently selectable. Our studies demonstrate that the normal function of murine hematopoietic stem and progenitor cells is not compromised by reduced-intensity long-term in vivo selection, thus underscoring the potential value of MGMT P140K selection for clinical gene therapy.
منابع مشابه
Differential Secondary Reconstitution of In Vivo-Selected Human SCID-Repopulating Cells in NOD/SCID versus NOD/SCID/γ chainnull Mice
Humanized bone-marrow xenograft models that can monitor the long-term impact of gene-therapy strategies will help facilitate evaluation of clinical utility. The ability of the murine bone-marrow microenvironment in NOD/SCID versus NOD/SCID/γ chain(null) mice to support long-term engraftment of MGMT(P140K)-transduced human-hematopoietic cells following alkylator-mediated in vivo selection was in...
متن کاملCotransduction with MGMT and Ubiquitous or Erythroid-Specific GFP Lentiviruses Allows Enrichment of Dual-Positive Hematopoietic Progenitor Cells In Vivo
The P140K point mutant of MGMT allows robust hematopoietic stem cell (HSC) enrichment in vivo. Thus, dual-gene vectors that couple MGMT and therapeutic gene expression have allowed enrichment of gene-corrected HSCs in animal models. However, expression levels from dual-gene vectors are often reduced for one or both genes. Further, it may be desirable to express selection and therapeutic genes a...
متن کاملPolyclonal chemoprotection against temozolomide in a large-animal model of drug resistance gene therapy.
Incorporation of drug resistance genes into gene vectors has 2 important roles in stem cell gene therapy: increasing the proportion of gene-corrected cells in vivo (ie, in vivo selection) and marrow protection to permit higher or more tightly spaced doses of chemotherapy in the treatment of malignant diseases. We studied in a clinically relevant canine model of gene therapy the P140K mutant of ...
متن کاملReciprocal relationship between O6-methylguanine-DNA methyltransferase P140K expression level and chemoprotection of hematopoietic stem cells.
Retroviral-mediated delivery of the P140K mutant O(6)-methylguanine-DNA methyltransferase (MGMT(P140K)) into hematopoietic stem cells (HSC) has been proposed as a means to protect against dose-limiting myelosuppressive toxicity ensuing from chemotherapy combining O(6)-alkylating agents (e.g., temozolomide) with pseudosubstrate inhibitors (such as O(6)-benzylguanine) of endogenous MGMT. Because ...
متن کاملDifferential competitive resistance to methylating versus chloroethylating agents among five O6-alkylguanine DNA alkyltransferases in human hematopoietic cells.
P140K-MGMT and G156A-MGMT genes encode two O(6)-benzylguanine-resistant O(6)-alkylguanine DNA alkyltransferase proteins that confer a high degree of O(6)-benzylguanine and 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) or O(6)-benzylguanine and temozolomide resistance to primary hematopoietic cells. In this study, we directly compared these and three other O(6)-benzylguanine-resistant MGMT genes f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 110 6 شماره
صفحات -
تاریخ انتشار 2007